New catalyst systems for the polymerization of acetylene

M. Aldissi^{*}, C. Linaya^{*}, J. Sledz^{*}, F. Schué^{*}, L. Giral[†], J. M. Fabre[†] and M. Rolland[†]

Université des Sciences et Techniques du Languedoc, Place Eugène Bataillon 34060 Montpellier–Cedex, France

(Received 11 May 1981)

The catalytic activities of WCl₆-Ph₄Sn, MoCl₅-Ph₄Sn and tetrabenzyltitanium were examined in the polymerization of acetylene. The structure, morphology and electrical conductivity of the doped and non doped polyacetylene were also studied.

Keywords Polymerization; catalyst; acetylene; doping; structure; morphology; electrical conduction

INTRODUCTION

Unlike vinyl polymers, acetylenic polymers are colour, semiconductivity, characterized by their paramagnetism, and geometric isomerism. Acetylenic monomers, however, do not form high polymers by conventional radical. cationic. or anionic polymerization¹. Only a few transition metal catalysts are known to polymerize acetylenes to give high polymers: for example, Ti(OC₄H₉)₄-4(C₂H₅)₃Al for acetylene²: Fe(III) acetylacetonate- $3(iso-C_4H_9)_3Al$ for alkylacetylenes³, and WCl_6 and $MoCl_5$ for phenylacetylene and other substituted acetylenes⁴⁻¹⁴. However, it was reported recently that acetylene was polymerized in the presence of of molybdenum halides and oxohalides and tungsten^{15,16}. In the present work, we examined the polymerization of acetylene by WCl₆-Ph₄Sn, MoCl₅-Ph₄Sn (which are effective catalysts for the polymerization of phenylacetylene) and the tetrabenzyl derivative of titanium (which is able to polymerize α olefins¹⁷). The structure, morphology and electrical conductivity of the doped and non doped polyacetylene were also studied.

EXPERIMENTAL

Materials

Acetylene and toluene were purified as reported previously¹⁸. WCl₆, MoCl₅ and tetraphenyltin (Ph₄Sn) were commercially available (purity > 99%) and were used without further purification. Tetrabenzyltitanium was prepared by the usual method¹⁷.

Polymerization

The preparation of the catalyst solutions and polymerization were carried out under high vacuum. The catalyst solutions were prepared as follows. The WCl_6 -Ph₄Sn and $MoCl_5Ph_4Sn$ were obtained by mixing equimolar amounts of respectively WCl_6 and $MoCl_5$ and Ph₄Sn in toluene, and these were also aged at 30°C for 15 min before use. These catalysts were all soluble. The

* Laboratoire de Chimie Macromoleculaire

- † Laboratoire de Chimie Structurale Organique
- [‡] Groupe de Dynamique des Phases Condensées (Laboratoire associé au CNRS)

0032-3861/82/020243-03\$03.00 ©1982 Butterworth & Co (Publishers) Ltd. polymerizations were performed as described previously¹⁸.

Measurements

The i.r. spectra of polymers were obtained using a spectrometer, Perkin-Elmer 577. Scanning electron microscopy was performed on a Jeol JSM 35.

The electron spin resonance spectra of polymers were observed as described in a previous paper¹⁹.

RESULTS AND DISCUSSION

Polymerization of acetylene

Figure 1 shows the time-conversion curves for the polymerization of acetylene catalysed by WCl_6 -Ph₄Sn, $MoCl_5$ -Ph₄Sn, $Ti(CH_2-C_6H_5)_4$ and $Ti(OnBu)_4$ -AlEt₃(Al/Ti=4)¹⁸ in toluene. It is seen from Figure 1

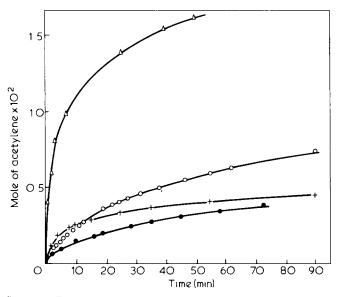


Figure 1 Time-conversion curves for the polymerization of acetylene initiated by new catalysts (1) Ti(OBu)₄-Al(Et)₃, \triangle , Al/T₁ = 4; (2) WCl₆-Ph₄Sn, \bigcirc , Sn/W = 1; (3) MoCl₅-Ph₄Sn, +, Sn/Mo = 1; (4) T₁(BZ)₄, \blacklozenge . [M_T] = 2 mole l⁻¹. Ageing time of catalyst (1) 60 min @ 20°C; (2) and (3) 15 min @ 30°C. $V_{toluene}$ = 10 ml $P_{acetylene}$ = 69 cm Hg; T° = 20°C

POLYMER, 1982, Vol 23, February 243

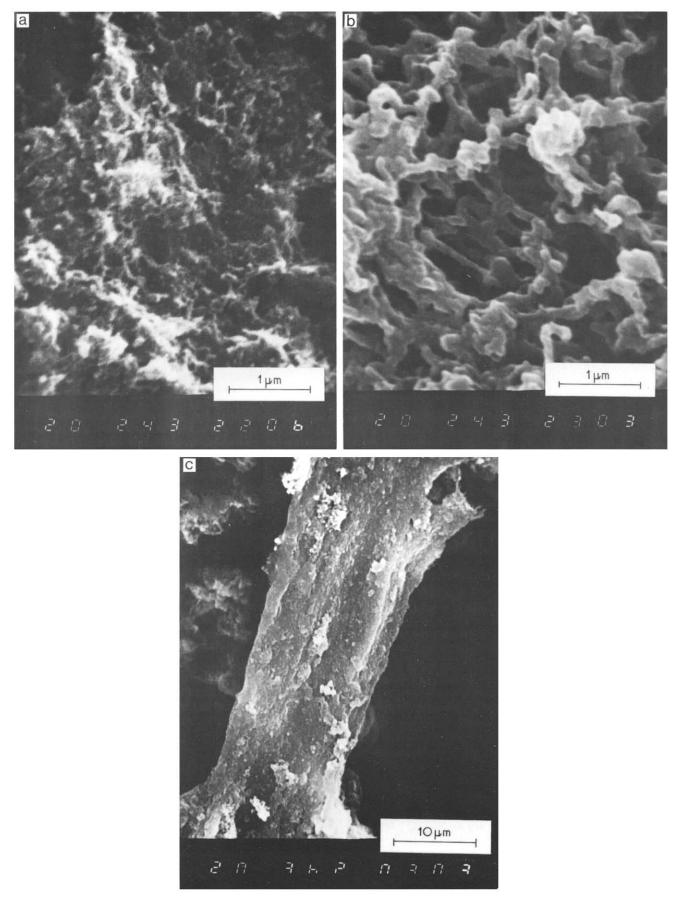


Figure 2 Scanning electron micrograph of $(CH)_x$ synthesized: a, with MoCl₅-Ph₄Sn; b, with Ti $(CH_2-C_6H_5)_4$; c, with WCl₆-Ph₄Sn = Ph₄Sn = Ph_4Sn = Ph_4S

Table 1 Structure of polyacetylene*

Structure	
cis %	trans %
10	90
10	90
40	60
60	40
	<i>cis</i> % 10 10 40

* The conditions of the polymerization are given in Figure 1

that the reactivities lie in the following order: $Ti(OnBu)_4$ -AlEt₃ \gg WCl₆-Ph₄Sn > MoCl₅Ph₄Sn > Ti(CH₂-C₆H₅)₄. However, during the course of the polymerization, we have observed the formation of uniform films of polyacetylene on the quiescent surface of concentrated solutions of the soluble catalysts except for MoCl₅-Ph₄Sn for which we obtained a powder. On the basis of these results, further investigation is necessary in order to establish a mechanism of polymerization.

Structure of polyacetylene

The values of elemental analysis for the polymer formed agreed well with the theoretical values (e.g. H/C = 1.00 1.09).

The polymers were examined by i.r. and e.s.r. The results are shown in *Table 1*.

Scanning electron micrograph

Examination of the polyacetylene films and powder by electron microscopy showed that the morphology varies with the catalyst.

Figure 2 represents electron micrographs of specimens observed by scanning electron microscopy. They indicate that any surface shows a characteristic fibrillar morphology. The width of the fibril ranges from ~ 300 Å for polymer prepared with MoCl₅-Ph₄Sn to 2000 Å with Ti(CH₂-C₆H₅)₄ and to 120 000 Å with WCl₆-Ph₄Sn.

Electrical conductivity of doped polyacetylene

The film obtained in the presence of $Ti(CH_2-C_6H_5)_4$ was doped with controlled amounts of electron-attracting species such as iodine, SbF₅ and CF₃SO₃H. Four platinum wires were attached to the films by means of gold paste and were connected to an apparatus for measuring theif d.c. conductivity by the four-probe method. The films were then treated with the vapour of the dopant at room temperature *in vacuo* for 10 h. Final compositions of the doped (CH)_x were determined either by the elemental analysis of a piece of reference film or by the increase in weight of the reference film during doping. The results are given in *Table 2*.

Table 2 Conductivity of polyacetylene

Material	Conductivity $\sigma(\Omega^{-1} \text{ cm}^{-1})$ (20°C)
[CH 10.24] x	20
[CH(SbF ₅) _{0.7}] _x	10
[CH(CF ₃ SO ₃ H) _{0.18}] _x	10

Elsewhere WCl_6 and $MoCl_5$ appear as *p* type dopants which provide conductivity values comparable to those obtained with iodine or other well known dopants. A detailed study of $(CH)_x$ films, as doped, is under progress¹⁹.

ACKNOWLEDGEMENT

Financial support from Direction des Recherches Etudes et Techniques under contract number 78/259 is greatly acknowledged.

REFERENCES

- Chauser, M. G., Rodionov, Yu. M., Misin, V. M. and Cherkshin, M. I. Uspekhi Khim 1976, 45, 695, Russ. Chem. Rev. 1976, 45, 348
- 2 Itoh, T., Shirakawa, H. and Ikeda, S. J. Polym. Sci., Polym. Chem. Edn. 1974, 12, 11
- 3 Trepka, W J and Sonnenfeld, R J J Polym Sci 4-1 1970, 8, 2721
- 4 Masuda, T., Hasegawa, K. and Higashimura, T. Macromolecules 1974, 7, 728
- 5 Sasaki, N., Masuda, T. and Higashimura, T. Macromolecules 1976, 9, 664
- 6 Masuda, T., Thieu, K. Q., Sasaki, N. and Higashimura, T. Macromolecules 1976, 9, 661
- 7 Hasegawa, K I, Masuda, T and Higashimura, T J Polym Sci., Polym Chem Edn 1977, 15, 1117
- 8 Masuda, T., Thieu, K. Q. and Higashimura, T. Polym. J. 1978, 10, 269
- 9 Masuda, T. Kawai, H. Ohtori, T. and Higashimura, T. *Polym J* 1979, **11**, 813
- 10 Masuda, T. and Higashimura, T. Macromolecules 1979, 12, 9
- 11 Ohtori, T., Masuda, T. and Higashimura, T. Polym J. 1979, 11, 805
- Kuwane, Y., Masuda, T. and Higashimura. T. Polym. J. 1980, 12, 387
- 13 Katz, T. J. and Lee, S. J. J. Am. Chem. Soc. 1980, 102, 422
- 14 Masuda, T., Okano, Y., Kuwane, Y and Higashimura, T. Polym J 1980, 12, 907
- Voronkov, M. G., Pukhnarevich, V. B., Sushchinskaya, S. P., Annenkova, V. Z., Annenkova, V. M. and Andreeva, N. J. J. Polym. Sci., Polym. Chem. Edn. 1980, 18, 53
- 16 Kıyashkına, Z H S., Pomogailo, A D., Kuzayev, A I., Lagodzinskaya, G V and Dyachkovskii, F S J Polym Sci., Polym Symp. 1980, 68, 13
- 17 Giannini, U., Zucchini, U. and Albizzati, E.J. Polym. Sci., Polym. Lett. Edn. 1970, 8, 405
- 18 Aldissi, M., Schué, F., Giral, L., Rolland, M. and Bernier, P. Polymer (in press)
- 19 Aldissi, M et al (to be published)